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SUMMARY 

A differential method is proposed to simulate bypass transition. The intermittency in the transition zone is taken 
into account by conditioned averages. These are averages taken during the fraction of time the flow is turbulent or 
laminar respectively. Starting from the Navier-Stokes equations, conditioned continuity, momentum and energy 
equations are derived for the laminar and turbulent parts of the intermittent flow. The turbulence is described by a 
classical k-6 model. The supplementary parameter, the intermittency factor, is determined by a transport 
equation applicable for zero, favourable and adverse pressure gradients. Results for these pressure gradients are 
given. 
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INTRODUCTION 

In most cases the boundary layer flow around a body is laminar downstream of the stagnation point. 
Through the presence of perturbations in the flow, however, the laminar boundary layer can change 
towards a turbulent layer and the length of the transition zone can be considerable. For a turbine blade, 
its length can extend up to 80% of the chord.' Through the transition zone, both the skin friction and 
the heat transfer may increase several fold. It is clear that one should take into account this transition 
phenomenon to evaluate quantities such as heat transfer and pressure losses. The laminar phase, which 
precedes the transition, can be calculated rather easily. The turbulent phase which follows the transition 
zone, is much more complex to describe. Nevertheless, during recent years turbulence modelling has 
progressively improved, so that nowadays turbulent flows can be calculated quite accurately. As a result 
of its complexity, this is not yet the case for the transition zone. The main reason is that besides the 
simultaneous presence of turbulent and laminar flow, there is also the interaction between the two 
phases. 

Different modes of transition exist. The first mode is natural transition and is typical of external 
flows. Starting from a certain Reynolds number, based on the displacement thickness a,, Res, = 
U,S,/v, the laminar layer is susceptible to small perturbations. By linearizing the boundary 
layer equations, Orr and Sommerfeld2 showed that a sinusoidal velocity perturbation is amplified 
throughout a range of wave numbers. These unstable waves are named after Tollmien and 
Schlichting (TS) and can be represented by two-dimensional vortex tubes. The evolution of these 
waves finally leads to the creation of turbulent Emmons spots. In the presence of large perturbations, 
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such as freestream turbulence, the creation of TS waves is bypassed. The perturbations induce the 
turbulent spots directly, through diffusion of turbulent eddies. This bypass transition is typical of gas 
turbines, where freestream turbulence levels can reach up to 20% or more. During transition, the flow 
changes gradually from laminar to turbulent. The two phases exist together and alternate as a function 
of time. The relative fraction of time the flow is turbulent at a certain position is called the 
intermittency factor y. This factor evolves from 0% to 100%. From experiments in zero, favourable 
and adverse pressure gradient 

In spite of the universal character of the growth of turbulence, many transition models have been 
developed without making use of the intermittency factor y. The classical integral method of 
Goldstein’ even neglects the length of transition. An abrupt switch from laminar to turbulent flow is 
imposed at the transition point. The connection between the two states is guaranteed through the 
equality of momentum thickness, O,(x,) = O,(x,). This oversimplified method predicts large jumps in 
skin friction and heat transfer which cannot be tolerated for designing turbine blades. In the one- 
equation approach of Rod? and Fujisawa et a1.’ a gradual change from a laminar to a turbulent layer is 
obtained by modifying &e mixing length. By this gradual change in the streamwise direction, the 
typical peak values of u{* and a during transition cannot be reached. Singer’ explains that the 
proposed correlations cannot be generally applicable. When using the low-Reynolds-number version 
of the two-equation turbulence models, a transition is produced which occurs in most cases too early 
and too fast in comparison with the physical transition? Schmidt and Patankar” tried to modify the 
production term for the k - ~  model in order to match the predicted transition with the physical 
transition. Wilcox” tried to reach the same goal for a k-w model but by modifying the damping 
functions. For both approaches the physical peak values of and a cannot be reproduced. 
Moreover, the correlations used are very sensitive and are in principle not very practical for general 
use. 

All the models mentioned above lack generality, as the presence of the turbulent spots in the laminar 
phase has not been taken into account. The model of Dhawan and Narasimha12 and Dey and 
NarasimhaI3 treats the global flow as a linear combination of a laminar and turbulent flow according to 
the ratio (1 - y ) / y .  This method guarantees a good prediction of skin friction and heat transfer for 
favourable and zero pressure gradient flow. Owing to the neglect of the existing interaction of the 
turbulent spots with the surrounding laminar flow, the method cannot predict transitional flow with 
adverse pressure gradient. The laminar state separates as soon as a positive pressure gradient is applied. 
In reality the entrainment of the laminar phase b i  the more stable turbulent flow prevents this 
instantaneous separation. For the same reason, the uf and a profiles are underestimated. 

An improvement of the existing transition models necessitates the incorporation of the interactive 
forces between laminar and turbulent phases. To make the distinction between these phases during the 
transition, conditioned averages can be used. These are averages taken during the fraction of time the 
flow is turbulent or laminar respectively. 

The technique of conditioning the flow equations in intermittent flows was introduced by LibbyI4 
and further refined by Dopazo.” This early work concentrated on the intermittency in the outer edge 
region of turbulent shear flows. Subsequently, many researchers have developed models for the terms 
generated by the interaction between the turbulent and non-turbulent parts of the flow, as well as a 
transport equation for the intermittency factor, for use in the free boundary of shear layers. A recent 
example is the work by Cho and Chung.I6 More examples are referenced in this work. 

Conditionally averaged equations can also be used to describe the intermittency during the transition 
of a boundary layer flow. This technique was introduced by Vancoillie and Dick.” In their work, the 
highly mathematical technique of Libby14 was followed very closely. The interaction terms were 
modelled in an ad hoc way appropriate for boundary layer flows on a flat plate. Good results were 
obtained for zero, favourable and mild adverse pressure gradients. The work focused on low- 

the evolution of y reveals a universal character. 
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turbulence-level natural transition. We focus here on bypass transition since our work is motivated by 
turbomachinery applications. In this paper we derive the conditioned equations in a more physical way 
than in the work of Libby. The result is a set of equations in which the laminar-turbulent interaction 
terms need no modelling. Solely the prescription of the intermittency factor is needed. 

CONDITIONED AVERAGES 

To illustrate the typical behaviour of a flow quantity in transitional flow, Figure 1 shows a sketch of the 
evolution in time of the velocity component in the x-direction, u. We can make the distinction between 
phases where the flow is turbulent, characterized by high-frequency fluctuations of the flow quantity, 
and phases where the flow is non-turbulent, characterized by low-frequency fluctuations. 

The succession in time of turbulent and non-turbulent behaviour of the flow in a transitional region 
is called intermittency. The intermittency factor y at some point in the flow is the relative fraction of the 
time the flow is turbulent. In an unsteady flow this factor may change with time. At a given time t, 
spatially some regions in the flow are turbulent, other regions are non-turbulent. Between these regions 
there are interfaces where flow quantities may change very abruptly. 

In order to take into account the intermittent behaviour of the flow, we define an intermittency 
function Z(x, y, z, t) with value 1 in a turbulent region and value 0 in a non-turbulent region (Figure 1). 
The time-averaged value of this function during some time interval T is the intermittency factor 

The time interval T is chosen to be large with respect to the time scales of the turbulence, but still 
small with respect to the time scales of the mean flow. 

In the following we will describe the flow by considering averages and fluctuations during the 
turbulent and non-turbulent fractions of the time. We call these quantities conditioned averages and 
fluctuations. Furthermore, we will denote non-turbulent regions in the flow as laminar although this 
designation is not universally accepted, since even in a globally steady flow, fluctuations are present in 
the non-turbulent regions. 

I utl 
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Figure 1. Typical hot-wire signal for velocity, with corresponding intermittency function I 
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We calculate first the turbulent and laminar conditioned mean values of a quantity for Reynolds 
averaging. Afterwards we verify the results for Favre averaging. As an example we take the velocity 
component in the x-direction. This quantity can be decomposed into mean and fluctuating components 
bY 

u = ti + u’ globally, 
u = iit + u; for I = 1, 
u = zI + u; for I = 0. 

The conditioned turbulent mean value and fluctuation satisfy respectively 

- 
ZU = yEt = - ZU dt and = 0. f 1 

The conditioned laminar mean value and fluctuation satisfy respectively 

(1 - Z)U = (1 - 7)El = - (1 - Z)U dt and (1 -I).{ = 0. f 1 
The global mean value satisfies 

[(l - Z ) U ~  + ZuJdt = (1 - 7)EI + yEt. 
- l T  

= Tj0 
As expected, the global mean value is a linear combination of the laminar and turbulent mean values. A 
global mean value of a product, on the other hand, cannot be written as a linear combination of the 
mean laminar and turbulent products. For the global Reynolds stress during the turbulent phase, 
-(u’& the following steps can be derived during the turbulent phase (Z = 1): 
- 

u ’ = u - i i  
- = u , - i i + u ;  

= Ut  - YEt - (1 - y ) q  + 24; 
= (1 - y)(E, - El) + u;, 

v’ = (1 - y)(V, - 31) + v;. 

- 

Multiplication of u’ and v‘ and time averaging leads to 
_ _ -  
(u’d), = u:.; + (1 - y)2(Et - El)(ti, - ti,). 

A similar derivation during the laminar phase (I = 0) gives 

u ‘ = u - E  
- -  = UI - u + 2.4; 

= u1 - YEt - (1 - y ) q  + 24; 
= y(E1 - E,) + u;, 

v’ = y(ti1 - 5,) -I- v;. 

- 

Multiplication of u’ and v‘ and time averaging leads to 
- -  
(U’d)I = .;.I + y2(El - Ut)(ti, - tit). 
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The global mean Reynolds stress -u" can be written as a function of the laminar and turbulent parts 
bY 

- -  __. 

u'v' = (1 - y)(u'v')1 + y(u'v')t 

= (1 - y)u;vl+ yi@ + y( 1 - y)(zs, - at)@* - 4). 

UQ = (1 - y)? + y q  + y( l  - y ) ( q  - ZJ2. 

(1) 

For one obtains 
- 

(2) 

Besides the linear combination terms, a third term arises which is premultiplied by the coefficient 
y(1 - y). This coefficient is zero before and after transition and reaches a maximum for y = 0.5. In 
equation (2), one notices that this extra term is always positive and leads to a rise in turbulent kinetic 
energy k. The term originates from the alternating velocity profiles near the interfaces of the turbulent 
and laminar regions and can be seen as a large turbulent eddy. In Figure 2 typical laminar and turbulent 
velocity profiles are drawn at a certain position in the transition zone. The extra term in (2) leads, in the 
case of the turbulent kinetic energy, to higher levels close to and further away from the wall. 

Further, we derive the equations for the conditioned averages of a space or time derivative quantity. 
The turbulent conditioned average of a space derivative term &/ax is defined by lau/ax During the 
turbulent phase we decompose by 

We accept that the quantity aUi/ax is uncorrelated, llke ui, such that the time average during the 
turbulent phase is zero: 

As a consequence, the contribution of the turbulent phase in the turbulent mean value is yai i t /&.  
Furthermore, there is a contribution coming from the fronts between turbulent and laminar regions. 
Figure 3 shows schematically the passage of an upgoing front, i.e. a front where the state changes from 
laminar to turbulent. Quantities at the front position are supposed to vary linearly over a very short 
distance dx,. 

1.0 u ", 

Figure 2. Laminar and turbulent velocity profiles at a certain position in the transition zone 
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Figure 3. Representation of a turbulent region by its intermittency function 

The intermittency function I can be written as 

t 
I = - for 0 < t < 6 t l ,  

6tl 

where 6tl denotes the time the front needs to pass. The velocity can be written as 

X 
11 = (q + u:) 1 - - + (El + 24;)- ( L l )  6x1 

The space derivative is 

for 0 < x < 6x1. 

The velocity of the upgoing front, cx, , is 

6x1 
CXl = - for 6tl + 0, 6xl + 0. 

For one passage of an upgoing front during the averaging time T, the contribution to the conditioned 
average of a derivative is 

The contribution from the fluctuating terms is of higher order and tends to zero for 6tl + 0 and 
6xl + 0. Thus the resulting contribution is 

For the downgoing front the contribution is similar. The contribution of both fronts for the passage of a 
single turbulent region is then 

(4) 

where cx2 is the velocity of the downgoing front. By integrating over many passages, a sum of terms of 
form (4) appears. The interpretation of this sum is straightforward. We consider the definition of the 
intermittency factor on the position P(x, y ,  z) and on a position P' an infinitesimal distance 6x further in 
the x-direction. When the upgoing front passes at time tl at the position P, it passes at time tl + Sx/cxl 
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at the position P'. Similarly, the downgoing front passes at times t2 and t2 + 6x/cx2. Neglecting higher- 
order variations of cx, and cx2 during the passage, the fraction of time that turbulent flow is seen at 
point P is given by 

while at point P' it is 

Hence 

This results in the rule for a space derivative 

This rule is valid for every other space direction. 
The laminar conditioned mean value can be derived similarly as 

au ar 
ax ax (1 -1)-=(1 -y)-+i(2t- i j l ) - .  ax 

The sum of expressions ( 5 )  and (6) gives 
- 
a24 

ax- ax ax' 
a" + (1 - Y)EIl - - -- 

which, of course, should be the result. 
Following a similar reasoning, conditioned mean values for a time derivative quantity can be 

constructed. We consider Z&/at. The contribution of the turbulent phase to the integral defining the 
mean value is y Z @ .  The front contributions for one passage are respectively 

For y constant in time there is complete compensation of these two terms. For varying y there is a 
resultant contribution. Over a time interval T the passage of the upgoing fronts is advanced in the mean 
by the amount I($/at)T,  while the passage of the downgoing fronts is retarded by the same amount. 
Thus over a given time T ,  for y augmenting in time, more upgoing fronts pass than downgoing fronts. 
The resultant contribution of the fronts to the integral is 

Thus the time derivative rule is like the space derivative rule: 
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Further, we need the conditioned average of the product of a quantity and the space derivative of 
another quantity, Zaablax. The contribution of the turbulent phase to the conditioned average is 

- 
y ( a,-++;-. Z )  

At the upgoing front, linear variation of the quantities is assumed and results in 

t 
a = (a, + u:>- + (5, + 

a x -  6x1 

6 4  
ab $1 + b; - 6, - b: - - 

The contribution to the integral is 

The similar contribution from the downgoing front is 

The final result is 

CONDITIONED NAVIER-STOKES EQUATIONS 

The rules for conditioned mean values and derivatives also carry over to Favre averages. We define 
mean and fluctuating parts of the density by 

p = pt + p: for Z = 1, where = @,, 

p = p , + p ;  forZ=O, where ( l - Z ) p = ( l - y ) p l .  

Hence p = ypt + (1 - y)&. Further, the turbulent and laminar Favre averages of the u-velocity are 
defined by 

Ipu = yptiit, (1 - Z)pu = (1 - y)j71Up 

The global Favre average follows from 
I pu = j7U = y&ii, + (1 - y)p&. 

In the following we neglect the fluctuations during the laminar phase. We introduce this simplification 
mainly to avoid the need for a model for the laminar fluctuations. 

We derive now the conditioned turbulent mean continuity equation. The unavenged equation is 

- + -+ - = 0. ap apu apv 
at ax ay 
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According to the rules for derivatives, we obtain as turbulent conditioned mean equation 

@t aptfit y- + y- + y- = 1y at ax ay 2 P' 

with 

ar - -  ar - - - a r  
ay .rp = (PI -a% + ( P P ,  - PtfiJG + (PIG - PtVt)-- 

The conditioned turbulent continuity equation used in the calculation is 

apt 1 -+- +- = 4;. 
at ax ay 2y 

The conditioned laminar equation is similarly 

(9) 

By summing (9) and (10) multiplied by y and 1 - y respectively, the global continuity equation can be 
reproduced. To illustrate this, we consider first the time derivative terms: 

This expression can be reorganized as 

aP1 aY arPt+a(l -YIP1 -2 
Y,,+Pt-+(l-g)--P-=- at at at - @t - a/ 

at at at . 

A similar combination can be made for the convective terms which finally leads to 

This equation represents the global mean continuity equation. 

form as 
The momentum equations may be treated similarly. We write the momentum equations in compact 

where the summation convention is used. The terms zii denote the molecular stress components. 
During the turbulent phase the Favre and Reynolds decompositions are 
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The turbulent conditioned equations are 

az,j - a /  = y- + $(% - TI&-. axj axj 
The usual eddy viscosity modelling approximations are now introduced: 

TR v = -pugu; = 

= 2pts,,, 
+ 2pesUJ, - - - 

P,k, = ; Pu;2, 

where T i  are the Reynolds stress components, k is the turbulence kinetic energy during the turbulent 
phase, pe is the eddy viscosity and st, is the rate-of-shear tensor based on Favre-averages during the 
turbulent phase. We neglect here front contributions to the turbulent mean shear stress. 

qptct) a(jitGtGt) a(ptitvt) ~t + 3 j i t Q  - a(pt + Pe)sw + Gt + Pe)stxy 

The resulting x-momentum equation is 

1 
- +-s;,, (12) 

at ax av + ax ax av 2Y 
+-+- 

with 

The corresponding laminar conditioned equation is 

qpliil) a(ijlii1ii,) a(jiii v ajjl I ast, 1 
1 1  I )+-=-  + -S&. av 2(1 - Y) +-+- 

at ax a~ ax ax 

The y-momentum equations for the turbulent and laminar phases can be derived similarly as 

q j i t c t )  qPtGtfit)  qptvtvt) ~t + +jitk> - qiit + /Le)$yx + 
+ P e & y  1 - +-$,, (14) 

ay ax aY 27 
+--- + +- 

ay at ax 
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The energy equation can be treated in the same way. The result is as for the other equations a laminar 
and a turbulent equation which are similar to the global averaged equation supplemented with source 
terms due to the front passages. The resulting energy equations are 

with 

The mean total energy kt and mean total enthalpy fit during the turbulent phase are given by 

where Zt is the mean internal energy. T$ are stress components formed by the s u m  of the Reynolds 
stress components and the mean molecular stress components during the turbulent phase. In the same 
way q r  are total heat flux components during the turbulent phase. 

CONDITIONED TURBULENCE EQUATIONS 

We derive here the equation for the turbulence kinetic energy during the turbulent phase, k;. From 
a combination of the conditioned continuity equation and the conditioned momentum equations 
an equation for the mean flow kinetic energy during the turbulent phase can be derived. This 
equation is 

where A is the source term in the conditioned turbulent continuity equation (9) and Bi are the source 
terms in the conditioned turbulent momentum equations due to intermittency. The term B, can be seen 
in equation (1 2) and is equal to ( 1 /2y)SJ,. Equation (1 7) is similar to the equation for the global mean 
flow kinetic energy but differs from this equation by the source terms due to intermittency. From the 
unaveraged continuity equation and the momentum equations, similar to (17) the equation for the 
unaveraged kinetic energy is found as 
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The conditioned averaged equation during the turbulent phase corresponding to (1 8) is 
- -  

a(pt ; fi;. + p,k) + a(pt ; ii& + pti$,) a(utipu;u; + i pu;?~;) 

ax, + 
at axj 

(19) 

We denote the source term due to intermittency in (1 9) by C. By combining (1 7) and (1 9), the equation 
for the turbulence kinetic energy during the turbulent phase is found as 

The left hand side of this turbulence kinetic energy equation has the same form as the global turbulence 
kinetic energy equation. We recognize the following terms: 

-J( production Pk = zii - , axj 

at4; 

axj 
dissipation -ziii -, 

- 
L-W’ -*t -% 
axj ax, axj 

compressibility p: 3 - u; - + u; - . 

The source term due to intermittency in the &-equation can be worked out into 

In each of the four parts in this source term the components which are grouped into square brackets 
more or less compensate for each other. We consider as an example the first group of components. In a 
wall-bounded flow the turbulent mean velocity component in the direction of the wall is larger than the 
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laminar velocity component near the wall, while the reverse is true far away from the wall. Thus near to 
the wall the considered coefficient is positive, while M h e r  away from the wall, where laminar and 
turbulent velocities are approximately equal, the coefficient is negative. Therefore the mean influence 
on the generation of turbulence kinetic energy is very low. The same can be said from the other three 
parts. The conclusion is that the source term in the 4-equation has only a second-order effect, in the 
sense that it can alter the distribution of 4 in a wall-bounded flow, but not the mean level. Therefore 
taking into account the modelling which anyhow has to be done on the left hand side of equation (20), 
it seems appropriate to neglect the right-hand side. We verified the influence of the source term by 
including the first and second groups of terms but leaving out ~ p u ~ ~ u ~  in the calculation. These 
introduced terms are free of any modelling. The influence on the results was completely negligible. 
The source terms in the Navier-Stokes equation (9H16) are much more significant and cannot be 
deleted. 

It is very important to come to the conclusion that the source terms in the turbulence equations can 
be neglected. For the k-equation it would not be difficult to introduce models for the terms in (21) that 
need closure, since these terms are linked to the diffusion process. It would, however, be almost 
impossible to construct the second equation for turbulence quantities since, for instance, the €-equation 
has not at all the same rational basis as the k-equation. 

We model the turbulence by the classical (low-Reynolds-number) k- and €-equations, but written for 
the turbulent conditioned averaged values. Owing to the good representations for zero (ZPG), 
favourable (FPG) and adverse (APG) pressure gradient flows, the Yang-Shih variantlg has been chosen 
as the low-Reynolds-number turbulence model. The equations are 

where 

Ry=-, PtylktY 4 = 1 - exp(alRy + a3Ri + a5R:), P 

The following model constants are used: c,, = 1-44, c,, = 
-1.5 x 
imposed. 

= 1, oc = 1.3, cp = t 0 9 ,  a, = 
a3 = -5 x lo-', a5 = -1 x lo-''. At the wall, k, = 0 and ptim = 2&(a,/4/@)2 are 
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INTERMITTENCY MODELLING 

For zero pressure gradient (ZPG) the intermittency y can be described algebraically according to 
Dhawan and Narasimha” by 

y(x) = 1 - exp[-iio(Re, - ~ e & ) * ] ,  (22) 

where h is the non-dimensional turbulence spot production rate and Q the turbulent spot propagation 
parameter. This law is valid for concentrated breakdown at x,, which is typical of natural transition. 
Concentrated breakdown can be recognized in the linear law of the function F(y)  = J[- In( 1 - y) ]  
(broken line in Figure 4) starting from x,. 

According to Mayle’’ and Gostelow and Walker:’ in bypass transition a Gaussian distribution of 
the spot production at the onset of transition is more realistic. To take account of this distributed 
breakdown, the growth parameter ho cannot be seen as constant in the beginning of the transition zone. 
Figure 4 shows schematically the evolution of F(y) as a function of distance for distributed 
breakdown.” To evaluate y ,  we first derive from (22) by differentiating: 

* u2 
I - y d X  V2 

A = no-. -- dy - - 2A(x - x,), 

Generally, formula (23) and F(y) can be written as 

Both expressions lead to a y-fimction: 

As both distributions must be the same, this results in 

B(x) = 2f(x)f’(x). 

Thus any F(y)-distribution can be used to evaluate y by 

(23) 

2 = (1 - y)2f(x)f’(x). 
dx 

Figure 4. Intemittency in distributed breakdown 
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In the case of a distributed breakdown the linear growth is obtained at about the level y = 20%. To 
model the initial behaviour of the growth, we draw a rational function, with i = x - x,, of the form 

ad4 + bd3 + cY2 + M + e 
Y3+f 

f (4  = 

through the points xSt, x, and xti with y-levels 1%, 2.5% and 20%, with xli - x, = x, - xst and 
boundary conditions dy/dx = 0 at x = xst and dy/dx equal to the value of the linear law at x = xti. 
To be sure that the function fits the linear law further away, an extra point is considered for y = 80%. 
The corresponding values are a = JA, b = -0.4906, c = 0.204A-0'5, d = 0, e = 0 . 0 W A - 1 ' 5  and 
f = 10e. 

For bypass transition the parameter ;cr and the point of transition, x,, have been correlated by 
Mayle'' based on intermittency measurements for zero pressure gradient flow as 

where Tu-intensity is in %. In the experimental results used by Mayle to derive these correlations, there 
is always uncertainty about the location where the turbulence level is defined. We take here the value at 
the leading edge. 

To the best of our knowledge there are no criteria available for the start of transition with distributed 
breakdown. Therefore, in the calculations we use formula (26) but applied to the start of transition xst, 
instead of x,. 

For non-parallel flow we can assume that (24) holds along a streamline: 

where ii, is the modulus of the global velocity and s is the co-ordinate along the streamline. In a 
Cartesian co-ordinate system (27) can be written as 

The value of s can be determined by 

Finally, for transition in a non-ZPG a pressure correlation is needed accounting for the difference in 
spot growth. Figure 5 gives the spot growth parameter normalized by the flat plate correlation (25) for 
a whole range of acceleration parameters (K = (v/V2) dU/dx) and turbulence levels (Tu in %). The 
data for the adverse pressure gradients are derived from the experiments of Gostelow et aL4, while the 
data for K > 0 are derived from Blair's data3 By fitting the law (22) to the central part of the 
experimentally determined y-distribution, the spot growth parameter is determined. The following 
correlations are proposed: 

(29) 
(474~~-2.9)1-exp(2x 1 0 6 ~ )  , K < O 1  
10-3227p 59s5 K > O  
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Figure 5. Normalized turbulent spot production rate as a function of acceleration parameter K at different turbulence levels 
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Figure 6. Correlations for normalized turbulent spot production rate as a hnction of acceleration parameter K at different 
turbulence levels 

The correlations are drawn in Figure 6 for different Tu-levels as a fimction of the acceleration 
parameter K .  The ratio in Figure 6,  for K > 0 is independent of the turbulence level. For K c 0, the 
ratio depends on the turbulence level and becomes independent of the acceleration parameter K for 
strongly decelerating flows. 

NUMERICAL PROCEDURE 

The conditionally averaged laminar and turbulent equations together with the intermittency transport 
equation can be written in vector form as 

a m  a p u Y  a p v y  - + - + - = sy. 
at ax ay 
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Equation (30) describes the laminar phase and differs from the classical Navier-Stokes equations by 
the presence of the source terms 

The second set of equations describes the turbulent phase and consists of the four Navier-Stokes 
equations along with the turbulent k-r equations. Except for the turbulence equations, there are also 
source terms present for the Navier-Stokes part. These source terms can be written concisely as 

The intermittency equation is activated at the transition point x,, which corresponds with y = 0.01. For 
x -= xst the intermittency factor y is set at the I % value. The upper value of y is restricted to 99% in 
order to avoid singularities. 

The integration of the laminar, the turbulent and the interkittency equation is based upon an upwind 
discretization. Using first-order upwind differencing guarantees the positiviness of the system so that it 
can be solved by any relaxation scheme. The second order correction to the fluxes is constructed by the 
flux extrapolation technique involving a minmod limiter. This contribution has no definite character 
and is put into a correction cycle. Full details on the splitting and the second-order correction are given 
in References 21 and 22. In Reference 22 special attention is given to the treatment of the source terms 
originating from the k t  equations. In order to assure the positivity of the system, the negative source 
terms are linearized and put into the left hand side. The same technique is applied on the negative parts 
of the source terms in the conditioned Navier-Stokes equations. No special linearization is necessary 
for the intermittency equation as the source term Sy is always positive. 

RESULTS 

In earlier work23'24 the intermittency factor y was prescribed algebraically according to the law of 
Dhawan and Narasimha,12 equation (22). The necessity of bringing the Gaussian distribution into the 
spot production was recognized very soon. In the following we discuss three different test cases: flows 
with a zero, a favourable and an adverse pressure gradient. 

The specifications of the different test cases are given in Table I, where V ,  stands for the velocity 
upstream of the leading edge (LE), Tul, is the turbulence level at the LE, xad - x,, is the relative 
position of the turbulence generating grid w.r.t. the LE and a is the mean acceleration parameter within 
the transition zone. The first test case, CU, comes from Kuan and Wang of Clemson University and is 
described in detail in Reference 25. The T3C1 case is a combined favourable and adverse pressure 
gradient flow typical of an aft-loaded turbine. This test case was proposed by ERCOFTAC. The 
velocity distribution along the flat plate with sharp leading edge is given in Figure 7(a). The final case, 

Table I: Description of different test cases 

cu 13.8 1.1 900 0 
T3C 1 6.12 7.78 610 1.75 x 
SUG5K6 15.28 3.9 1200 -0.9 x 
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Figure 7. Velocity distribution along flat plate for (a) T3C1 and @) SUG5K6 

SUG5K6, has been tested by Gostelow et al. and is described extensively in References 4 and 26. The 
adverse pressure gradient acts on a flat plate with an rounded elliptical nose in order to prevent 
separation bubbles. Figure 7(b) gives the corresponding velocity distribution. 

Zero pressure gradient (Case CU) 
In Figure 8, the skin friction C,, the shape factor H and the Reynolds number based on momentum 

thickness Reo, are given as functions of Re,. The experimental values are represented by open 
rectangles. The lower line in the Cf-plot represents the exact Blasius-solution given by 
Cf = 0.664/JRex. The upper line represents the relation for the turbulent skin fnction: 
C, = 0.445/ ln2(O-06Re,). The predicted Cf-evolution is given by the third line. It is seen that both 
the transition point and the transition length are very well reproduced. Although not very clear, the 
experimental evolution of the shape factor starts already to deviate upstream of the transition point 
from the laminar value 2-59. This effect is, as will be seen later, more clearly present at higher 
turbulence levels. Through diffusion of turbulent eddies from the main flow towards the wall, the outer 
region of the boundary layer is affected first. As a consequence, the velocity profile in the outer region 
tends to a turbulent one through the presence of turbulent Reynolds stresses. This results in a decrease 
of the shape factor already upstream of the transition point. This diffusion should be taken into account 
in the modelling by defining a normal y-distribution. This has not yet been introduced in the model. 

Figure 9 shows the evolution of the profile of the global streamwise velocity fluctuation u' during 
transition for different positions along the plate. The global streamwise Reynolds normal stress is, with 
the usual approximation, given by (2): 

- -  - 
un = k = yk, + iy(l - y)[(ii, - ii,)2 + (G, - v,)2], (33) 

where is the turbulence kinetic energy during the turbulent phase. The term (1 - y)kl is dropped in 
expression (33) as the laminar fluctuations are neglected in the cAlculation. At the start of transition the 
experimental data already show appreciable levels of u' = JuR. The numerically predicted level is 
much lower owing to the neglect of laminar fluctuations. The laminar contribution to u' is important 
since it is multiplied by 1 - y. Further in the transition phase the peak is well represented and 
corresponds well with the experimental data. Profiles of mean streamwise velocity components are 
shown in Figure 10. The correspondence with the experiments is quite reasonable. The evolution of the 
intermittency factor y is shown in Figure 11. No experimental data are given at the start of transition 
since in the experiments no plateau was detected. 
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Figure 8. Skin friction coefficient (top), shape factor (middle) and Reynolds number based on momentum thickness (bottom) for 
CU (0, experimental values) 

Favoumble pressure gradient (Case T3Cl) 

The skin friction C,, the shape factor H and the Reynolds number based on momentum thickness 
Ree are given in Figure 12. The start and length of transition are well reproduced in the +plot. The 
lower and upper lines represent respectively the fully laminar and turbulent skin friction on a flat plate. 
As explained in the previous subsection, a larger discrepancy is present for the shape factor owing to 
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Figure 9. Profiles of fluctuating streamwise velocity component at six locations along plate for CU (0, experimental values) 

the higher freestream turbulence. Figure 13 shows the evolution of the profile of the global streamwise 
velocity fluctuation u' during transition. Concerning the streamwise fluctuation, the same remarks can 
be made as in the CU-case: the fluctuations are underpredicted in the beginning of the intermittency 
zone while the levels correspond better further downstream. The mean velocity profiles, shown in 
Figure 14, correspond extremely well with the data. No experimental data for the intermittency factory 
are available for this test case. 
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Adverse pressure gradient (Case SUGSK6) 

Figure 15 gives the skin fiction Cf, the shape factor H and the Reynolds number based on 
momentum thickness Ree. Unfortunately, no experimental data are available for the skin friction C f .  
The predicted C, can only be compared with the exact laminar (lower line) and turbulent (upper line) 
skin friction. Owing to the adverse pressure gradient and the high turbulence level, a larger discrepancy 
is present for the shape factor than in the previous cases. Both the pressure gradient and the turbulence 
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Figure 1 1. Evolution of intermittency factor y along plate for CU (0, experimental dues )  

intensity enhance the diffusion of the turbulence towards the wall. At the leading edge both the skin 
fnction and the shape factor show some oscillatory behaviour. This can be attributed to an irregularity 
of the leading edge shape in the experiments. We preferred to leave this irregularity in the calculations 
rather than to smooth it, because results are very sensitive to details in the shape. Globally, the 
momentum thickness has the same behaviour as in the measurements. As no experimental data are 
available, the distributions of the streamwise fluctuations are not given. The numerical results reveal 
peak values of 25% and higher. The mean velocity profiles, shown in Figure 16, correspond 
reasonably well with the data. The evolution of the intermittency factor y is shown in Figure 17. The 
correspondence between the predicted evolution and the experimental data is quite good. 

CONCLUSIONS 

Conditioned averaged Navier-Stokes equations have been derived to model the transition zone. The 
source terms in the conditioned equations express the interaction between turbulent and non-turbulent 
parts in the flow. A transport equation for the intermittency factor has been derived. The source term in 
this equation represents the growth rate of the turbulent spots and is made dependent upon the 
acceleration parameter and the turbulence level. Introducing a dynamically determined intermittency 
factor leads to a very good prediction of the transitional behaviour. Skin friction and mean velocity 
profiles are in good agreement with measured profiles. The shape factor in the beginning of the 
transition deviates from the experimental values owing to the neglect of the normal variation of the 
intermittency factor. Except for the beginning of the transition, the turbulence profiles are well 
predicted. The discrepancy is due to the neglect of the laminar fluctuations. 
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